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Classical Cryptography

Current cryptography :

• The Integer Factorization Problem

• The Discrete Logarithm Problem

Hard for classical computers, solved in polynomial time on a quantum

computer using Shor’s Algorithm.
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Post-Quantum Cryptography

Post-Quantum Cryptography (PQC) → usable on classical computer but

resistant to quantum computers.

In 2016, the NIST launched a competition for PQC. Looked for

Signature and Key exchange protocols. Different Candidates :

• Lattice-based crypto

• Code-based crypto

• Multivariate-based crypto (Signatures only)

• Hash-based crypto (Signatures only)

• Isogeny-based crypto (Key exchange only)

For isogenies : SIKE a variant of the SIDH protocol (2011 by D. Jao and

L. De Feo).
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Isogeny-based cryptography



Isogeny notations

Separable isogeny:

φ : E → E ′

The degree is deg(φ) = | ker(φ)|.

The dual isogeny φ̂ : E ′ → E

φ̂ ◦ φ = [deg(φ)]E
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Endomorphism ring

An isogeny φ : E → E is an endomorphism. End(E ) is a ring with

addition and composition.

Examples: [n]E for n ∈ Z, Frobenius over Fp i.e π : (x , y)→ (xp, yp)

On elliptic curves over finite fields:

• Ordinary when End(E ) is an order of a quadratic imaginary field.

• Supersingular when End(E ) is a maximal order of a quaternion

algebra.
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Supersingular Isogeny Graph

Supersingular `-isogeny graph: Vertices are supersingular elliptic curves,

Edges are `-isogenies.

This graph is

• Finite

• Fully connected

• Regular

• Ramanujan (optimal expander graph)

6



Supersingular Isogeny Graph

Supersingular `-isogeny graph: Vertices are supersingular elliptic curves,

Edges are `-isogenies.

This graph is

• Finite

• Fully connected

• Regular

• Ramanujan (optimal expander graph)

6



Supersingular Isogeny Graph

Supersingular `-isogeny graph: Vertices are supersingular elliptic curves,

Edges are `-isogenies.

This graph is

• Finite

• Fully connected

• Regular

• Ramanujan (optimal expander graph)

6



Supersingular Isogeny Graph

Supersingular `-isogeny graph: Vertices are supersingular elliptic curves,

Edges are `-isogenies.

This graph is

• Finite

• Fully connected

• Regular

• Ramanujan (optimal expander graph)

6



Supersingular Isogeny Diffie Hellman
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Supersingular Isogeny Problem

The underlying security problem:

Supersingular `-Isogeny Problem: Given a prime p and two

supersingular curves E1 and E2 over Fp2 , compute an `e-isogeny

φ : E1 → E2 for e ∈ N?.
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The Deuring Correspondence



Quaternion Algebra

The quaternion algebra H(a, b) is

H(a, b) = Q + iQ + jQ + kQ

with i2 = a, j2 = b and k = ij = −ji .

Conjugates:

α = a1 + a2i + a3j + a4k 7−→ α = a1 − a2i − a3j − a4k

The reduced norm

n(α) = αα
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Order and ideals

Fractional ideals are Z-lattices of rank 4

I = α1Z + α2Z + α3Z + α4Z

The Reduced norm n(I ) = {gcd(n(α)), α ∈ I}

An order O is an ideal which is also a ring, it is maximal when not

contained in another order.

The (maximal) left order OL(I ) of an ideal is

OL(I ) = {α ∈ H(a, b), αI ⊂ I}

An ideal is integral when I ⊂ OL(I ).

The equivalence relation ∼ is I ∼ J when I = Jq for q ∈ H(a, b)?
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The Deuring Correspondence

Supersingular elliptic curves over Fp2 ←→ Maximal orders in Ap

Example : p ≡ 3 mod 4, Ap = H(−1,−p).

E0 : y2 = x3 + x and End(E0) ' 〈1, ι, ι+ π

2
,

1 + ιπ

2
〉

with π is the Frobenius and ι : (x , y) 7→ (−x ,
√
−1y)
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The Deuring Correspondence, Summary

Supersingular elliptic curve over Fp2 Maximal Orders in Ap

E0 O0 ' End(E0)

(E1, φ) with φ : E0 → E1 Iφ integreal left O0-ideal

deg(φ) n(Iφ)

φ̂ Iφ

φ : E0 → E1, ψ : E0 → E1 Equivalent Ideals Iφ ∼ Iψ
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The Quaternion `-isogeny Path

Problem



The problem

The Quaternion `-Isogeny Path Problem is the problem corresponding to

the Supersingular `-Isogeny Problem through the Deuring

Correspondence.

Quaternion `-Isogeny Path Problem: Given a prime number p, a

maximal order O of Ap and I a left integral O-ideal, find J ∼ I of norm

`e for e ∈ N?.

This problem allows to reduce the Supersingular `-isogeny problem to the

computation of the endomorphism ring.
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A key lemma

Lemma

Let I be a left integral O-ideal and α ∈ I . Then, I α
n(I ) is an integral left

O-ideal of norm n(α)
n(I ) .

Solving the Quaternion `-Isogeny Path Problem reduces to solving a

norm equation over I .
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The solution of KLPT

In 2014, Kohel et al. polynomial time solution when O is a special

extremal order.

Algorithm KLPT:

Input: I , n(I ) = N

Output: J ∼ I

1. Find γ ∈ O of norm N`e0 .

2. Find ν0 such that γν0 ∈ I .

3. Find ν the strong approximation of ν0 of norm `e1 .

4. Output J = I βN with β = γν.
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The generic Solution

E0

E1

E2

φJ

τ1

φI

τ2

Input: φI , φJ

Output: τ2 ◦ τ̂1
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Contribution



Pushforward isogenies

E

E ′

E ′′′

E ′′

φ

ψ

[φ]∗ψ

[ψ]∗φ
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The idea of the algorithm

E0 E1

E3 E2E4

φ

ψ[φ̂]∗ψτ [φ]τ
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When does E2 ' E4 ?

E0 E1

E3 E4E2

φ

[φ]∗ψ2ψ2ψ1 [φ]∗ψ1

Lemma
Given:

• Two isogenies ψ1, ψ2 from E0 to E3 of degree N1,N2, β = ψ̂2 ◦ ψ1

• φ : E0 → E1 of kernel 〈R〉 and degree N coprime with N1 and N2

E2 ' E4 ⇐ Iψ2 = Iψ1

β̄

N1
and ∃λ ∈ Z/NZ? such that β − λ ∈ Iφ
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The new generic algorithm

Algorithm GeneralizedKLPT:

Input: I a left O1 ideal, Iφ.

Output: J ∼ I of norm `e .

1. Compute I ′ =
[
Iφ̂

]
∗
I

2. Find β1 ∈ I ′ of norm N`e0 with KLPT.

3. Find ν0 ∈ O0 such that ∃λ ∈ Z?, such that β1ν − λ ∈ Iφ.

4. Find ν, the strong approximation of ν0 of norm `e1 .

5. Set β = β1ν, J ′ = I ′ βN and output J = [Iφ]∗ J
′.
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Analysis of the solution

The KLPT algorithm for the special extremal case produces a solution of

norm `e where e ∼ 7
2 log`(p) = 1

2 log`(p) + 3 log`(p)1.

The solution of our algorithm has norm `e with

e ∼ 7
2 log`(p) + 3 log`(p) = 13

2 log`(p).

An optimization allows to reduce this term by log`(p), yielding a solution

of size 11
2 log`(p).

The output isogeny φI , does it reveal any information on φ?

1The size of the smallest solution is around log`(p).
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Conclusion

A new solution to generic Quaternion `-isogeny path problem:

• Attacks and Security Reductions.

• A generalization of the signature protocol from Galbraith et al. in

2017.

• Other applications?
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Thank you for your time.
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