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Classical Cryptography

Current cryptography :

e The Integer Factorization Problem

e The Discrete Logarithm Problem

Hard for classical computers, solved in polynomial time on a quantum
computer using Shor's Algorithm.



Post-Quantum Cryptography

Post-Quantum Cryptography (PQC) — usable on classical computer but
resistant to quantum computers.

In 2016, the NIST launched a competition for PQC. Looked for
Signature and Key exchange protocols. Different Candidates :

e | attice-based crypto

e Code-based crypto

e Multivariate-based crypto (Signatures only)
e Hash-based crypto (Signatures only)

Isogeny-based crypto (Key exchange only)

For isogenies : SIKE a variant of the SIDH protocol (2011 by D. Jao and
L. De Feo).
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Endomorphism ring

An isogeny ¢ : E — E is an endomorphism. End(E) is a ring with
addition and composition.

Examples: [n]g for n € Z, Frobenius over F, i.e m: (x,y) — (xP, yP)
On elliptic curves over finite fields:

e Ordinary when End(E) is an order of a quadratic imaginary field.

e Supersingular when End(E) is a maximal order of a quaternion
algebra.
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Supersingular Isogeny Graph

Supersingular (-isogeny graph: Vertices are supersingular elliptic curves,
Edges are (-isogenies.

This graph is

e Finite

Fully connected

Regular

e Ramanujan (optimal expander graph)



Supersingular Isogeny Diffie Hellman



Supersingular Isogeny Problem

The underlying security problem:

Supersingular /-Isogeny Problem: Given a prime p and two
supersingular curves E; and E; over 2, compute an /*-isogeny
¢ E; — E, for e € N*,
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Order and ideals

Fractional ideals are Z-lattices of rank 4
| = 041Z + OQZ + CK3Z + O[4Z

The Reduced norm n(/) = {gcd(n(a)),a € 1}

An order O is an ideal which is also a ring, it is maximal when not
contained in another order.

The (maximal) left order O, (/) of an ideal is

O.(l) ={a € H(a,b),al C I}

An ideal is integral when | C O (/).

The equivalence relation ~ is | ~ J when | = Jg for g € H(a, b)*
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The Deuring Correspondence

Supersingular elliptic curves over [F» <— Maximal orders in A,

Example : p=3 mod 4, A, = H(—-1,—p).

1
Eo:y> = x>+ x and End(Ep) ~ (1,1, h;ﬂ’ +2”T>

with 7 is the Frobenius and ¢ : (x,y) — (—x,v/—1y)
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The Deuring Correspondence, Summary

Supersingular elliptic curve over F» | Maximal Orders in A,
Eq O ~ End(Ep)

(E1, ¢) with ¢ : Eg — E; I integreal left Op-ideal
deg(0) n(ly)

¢ Iy

¢ Eg— Ey 0 Eg — E; Equivalent Ideals Iy ~ I,
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The Quaternion /-isogeny Path
Problem




The problem

The Quaternion ¢-Isogeny Path Problem is the problem corresponding to
the Supersingular ¢-Isogeny Problem through the Deuring
Correspondence.

Quaternion /-lsogeny Path Problem: Given a prime number p, a
maximal order O of A, and | a left integral O-ideal, find J ~ | of norm

(¢ for e € N*.

This problem allows to reduce the Supersingular /-isogeny problem to the
computation of the endomorphism ring.
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A key lemma

Lemma

Let | be a left integral O-ideal and o € I. Then, I% is an integral left

O-ideal of norm ':7((7)).

Solving the Quaternion ¢-Isogeny Path Problem reduces to solving a

norm equation over /.
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The solution of KLPT

In 2014, Kohel et al. polynomial time solution when O is a special
extremal order.

Algorithm KLPT:
Input: /, n(/) =N
Output: J ~ |
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The solution of KLPT

In 2014, Kohel et al. polynomial time solution when O is a special
extremal order.

Algorithm KLPT:
Input: /, n(/) =N
Output: J ~ |
1. Find v € O of norm N/¢%.
2. Find v such that v € 1.
3. Find v the strong approximation of vy of norm /(€.
4

. Output J = I% with 5 = yv.
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The generic Solution

% Elx»
Eo\_/ E,
v

InPUt: ¢/1 ¢J

Output: o7y
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Pushforward isogenies

£’ \K
E///
, /W,

E/¢/
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The idea of the algorithm

EO ¢ El

T \ [6].0> [o]7 \w

= E, E
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When does E, ~ E; 7

S

E, E4
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When does E, ~ E; 7

S

E, E4

Lemma
Given:

e Two isogenies 11,1, from Ey to E3 of degree Ny, N>, 3 = 1/32 o
e ¢: Ey — E; of kernel {R) and degree N coprime with Ny and N,

E>, ~ E, < Ii/Jz /1/“,6 and d\ € Z/NZ* such that 5 — )\ € I¢,
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The new generic algorithm

Algorithm GeneralizedKLPT:
Input: / a left O ideal, /,.
Output: J ~ [ of norm /€.

1. Compute I’ = M*/

. Find 81 € I of norm N{® with KLPT.

. | Find vg € Op such that 3\ € Z*, such that f1v — A € I,.

2
3
4. Find v, the strong approximation of vy of norm /€.
5. Set 8= B, J' = I'2 and output J = [I], J'.
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Analysis of the solution

The KLPT algorithm for the special extremal case produces a solution of
norm (¢ where e ~ £ log,(p) = 3 log,(p) + 3log,(p)".

IThe size of the smallest solution is around log,(p).
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Analysis of the solution

The KLPT algorithm for the special extremal case produces a solution of
norm (¢ where e ~ £ log,(p) = 3 log,(p) + 3log,(p)".

The solution of our algorithm has norm £¢ with
e ~ Jlog,(p) + 3log,(p) = 3 log,(p).

An optimization allows to reduce this term by log,(p), yielding a solution
of size & log,(p).

The output isogeny ¢/, does it reveal any information on ¢?

IThe size of the smallest solution is around log,(p).
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Conclusion

A new solution to generic Quaternion {-isogeny path problem:

e Attacks and Security Reductions.
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Conclusion

A new solution to generic Quaternion {-isogeny path problem:

e Attacks and Security Reductions.

e A generalization of the signature protocol from Galbraith et al. in
2017.

e Other applications?
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Thank you for your time.
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